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Monday, August 12

12.30-13.45 Lunch in salons Arenberg, Arenberg castle Page

13.45-14.00 Opening of the Workshop

Session 1 Basic concepts of the TLS problem

14.00-14.30 Gene H. Golub 26
Basic principles of the TLS problem-,

14.30-15.30 Sabine Van Huff-el 42

Trih TLS problem: current state of research and applications

15.30-16.00 Break

Session 2 Structured and constrained TLS problems

16.00-16.30 James Demmel 2,
TLS with structured perturbations

16.30-17.00 Bart De Moor 21
Structured TLS problems

17.00-17.30 Theagenis J. Abatzoglou 11

Constrained TLS and superresolution signal processing

17.30-18.00 James A. Cadzow 17
Constrained TLS problem

19.00 Dinner in restaurant "De Oude Kantien"
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Tuesday, August 13

ession 3 Some special TLS problems Page

09.00-09.30 Musheng Wei 46
The TLS problem with more than one solution: solutions,
perturbation theory and relations with the LS problem

09.30-10.00 James R. Bunch and Ricardo494. Fierro i3

Collinearity and the o4-dimensional TLS problem

10.00-10.30 TrevorJKaOiWe, Tom Duchamp and Werner Stuetzle 29
_-Tincpal curves

10.30-11.00 Break

Session 4 TLS algorithms

11.00-11.30 Gilbert W. Stewart 38
Updating rank revealing URV decompositions

11.30-12.00 Sabine V'an Huffel and Hongyuan Zha 43

An efficient TiS algorithm based on a rank-revealing
two-sided t'hogonal decomposition

12.00-12.30 M4rc Moonen 33
Algorithms and architectures for recursive total least

squares estimation

12.30-14.00 Lunch in salons Arenberg, Arenberg castle

Session 5 : Errors inLvariables and statistical properties, part 1 1
J

14.00-14.30 Wayne A. Fuller 25

Properties of estimators for the errors-in-variables model

14.30-15.00 Hugo Van hamme and Rik Pintelon 41

Asymptotic properties of a class of regression-type estimators

15.00-15.30 John Van Ness 44
Robust estimation in measurement error models
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15.30-16.00 Break

Session 6 : Errors-in-vari-zbles and statistical properties, part 2 -

16.00-16.30 Chi-Lun Cheng 18
TLS and errors-in-variables regression

16.30-17.00 Larry P. Ammann 13
AIgrithms for robust M-estimation of co-ariance eigen-structure

17.30-19.30 Guided visit through Leuven: beguinage, city hall, university

20,00 Dinner in restaurant "De Oude Kantien"
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1 Wednesday, August 14

Session 7 Errors nvariables and system identification' Page

09.00-09.30 Torsten S('derstr5r' 37
Some aspects on treating measurement errors in
system identification

09.30-10.00 Roberto P. Guidorzi 27
Errors-in-variables identification and model uniqueness

10.00-10.30 Adina Stoian 39
ComparatiYpoaforfnce study of least squares and TLS
Yuie-Waiker estimates of autoregressive parameters

.10.30-11.00 Break

Session 8 TLS applications in signal processing 2

11.00-11.30 Donald W. Tufts and Abhijit A. Shah 40
Signal enhancement motivated by TLS and Jine ar prediction

11.30-12.00 Richard Roy 35
Real world applications of TLS: Direction-finding and system

identification

12.00-12.30 Miehael P. Clark and Louis L. Scharf 19
Maximum likelihood parameter estimation for array processing

12.30-14.00 Lunch in salons Arenberg, Arenberg castle

Session 9 Nonlinear TLS problems'

14.00-14.30 Yasuo Amemiya 12
Parameter estimation in nonlinear errors-in-variables problems

14.30-15.00 Paul T. Boggs 15

Orthogonal distance regression

15.00-15.30 Janet E. Rogers 34

ODRPACK: software for orthogonal distance regression
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15.30-16.00 Break

S.,Zsion 10 : Other TLS applications .

16.00-16.30 George WF. Fisher 23
TLS metho-ds of analyzing mineral assemblages and reactions
in metamorphic rocks

16.30-17.00 Jac H. Lee 30
The use of TLS in an oceanographic problem

17.30-17.30 Mary B. Seasholtz and Bruce R. Kowalski 36
Tensorial calibration in chemistry

17.30-18.00 Trevor Hastie. Eyal Kishon, "Malcolm Clark and Jason Fan 28
A model for signature verification

18.00-19.00 Demonstrations

19.30 Banquet
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Thursday, August 15

Session 11 : Extensions of TLS to infinite dimensional spaces Pa
and other norms ,

09.00-09.30 G. Als'air W atson *5
Total ('hebvsh v app- -ination

09.30-10.00 K. 5. Arun 14
Infinite dimensional TLS problems

10.00-10.30 Jan-Franois 1aztrc 31
TLS and acceptable generalized solution to a problem.
Theoretical results for general norms

10.30-11.00 Brrak

11.00-12.15 Open problrms and Iiscussmon

12.15-12.30 Closing of the Vorkshop

12.30-14.00 Lunch in salons Arenberg, Arenberg castle

14.00 E nd.

9



WORKSHOP ON

-Total Least Squares: Concepts, Algorithms,
Applications".

August 12-15. 1991.

ABSTRACTS

10



Constrained Total Least Squares Problem
and Superresolution Signal Processing.

Theagenis J. Abatzoglou

Lockheed Missiles 4 Space, Inc.,
Research & Development 0191-50, B251.

3251 Hanover Street, Palo Alto, CA 94304-1191, U.S.A.

Constrained Total Least Squares (CTLS) is a generalized version of Total Least Squaref
whlere t'--- noise perturbations to the coefficients of a linear system of equations are allowed
to satisfv linear relations. Theoretical properties of the CTLS solution are presented which
i-clude its equivalence to a Maximum Likelihood estimator, reduction of the solution to
an unconstrained lover dimensionality problem., perturbation analysis and numerical algo-
rithins.

Applications of CTLS to signal processing are realized by imposing a linear model to
data samples. Linear prediction is a good model for harmonic signals; applications include:
frequency estimation (cne- or two-dimensional), direction finding, extraction of resonances
of objects, etc.
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Parameter Estimation in Nunlinear
Errors-in-Variables Problems.

Yasuo Amemiya

Department of Statistics, Iowa State University,
102G Snedecor Hall. Ames. Iowa 50010, U.S.A.

The functional errors-in-variables model assumes that observations are the sums of un-
derlying true values and measurement errors, and that the true values are fixed constants
satisfying some relationship. The case where the relationship is specified by a nonlinear
parametric function is considered. The maximum likelihood estimator of the parameter
under the assumption of normal measurement errors is a nonlinear total least squares esti-
mator. It is shown that such an estimator has a nonnegligible bias due to the nonlinearity
and measurement errors. An estimator that does not have such a bias is suggested. The-

oretical and numerical results supporting the superiority of the bias-adjusted estimator
relative to the maximum likelihood estimator are presented.
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Algorithms for Robust M-Estimation of
Covariance Eigen-structure.

Larry P. Anmnann

Programs in Mathematical Sciences,

University of Texas at Dallas,
Richardson, TX 75080, U.S.A.

Robust location and covariance estimators are developed via general M-estimation for
covariance matrix eigenvectors and eigenvalues, which results in a generalization of pro-
jection pursuit. The solution to this M-estimation problem is obtained by ransforming it
into a series of robust regression problems. The motivation for this transformation is the
interpretation of the singular value decomposition as an i:eration of two steps - a least
squares regression fit of the data matrix followed by a rotation to the regression hyper-
planes. An algorithm to obtain this solution is presented, along with results of a Monte
Carlo study and examples of its application.

This algorithm is derived by efficiently replacing least squares regression with robust re-
gression, which then produces a broad class of new robust methods for multivariate data.
Some results in numerical linear algebra are presented which describe the relationships
among least squares regression, the QR decomposition, and the singular value decompo-
sition. These results are utilized in the algorithm to solve the M-estimation problem so
that it can be built upon standard, commonly available, numerical linear algebra routines.
In addition, it is shown how the output of this algorithm can be used to search r.uineri-
cally for multivariate outliers. This i- especially useful in exploratory data analysis with

high-dimensional data where graphical techniques are difficult to implement. Since the
algorithm computes robust estimates of the eigenvectors and eigenvalues of the covariance
matrix, it can be used as a basis for other multivariate methods such as signal subspace
totimation and direction of arrival problems, errors-in-variables regression, discrintinant
analysis, and principal components. The examples of its application given here include
some data sets which have been examined by other methods for comparison purposes, and
an application to a large data set taken from the Landsat satellite.
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Infinite Dimensional Total Least Squares
Problems.

K. S. Arun

Coordinated Science Laboratory,

University of Illinois,
1101 West Springfield Avenue,

Urbana-Champaign, IL 61801, U.S.A.

In this lecti're: we will formulate and solve infinte diniei-,sional veisions of the gcneric
and non-generic total least squares problems, and apply it to problems such as decon-
volution, linear-min-variance estimation, system identification, and Kalman and Wiener
filtering.
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Orthogonal Distance Regression.

Paul T. Boggs

National Institute of Standards and Technology (NIST),
Applied and Computational Mathematics Division,

Gaithersburg, MD 20899, U.S.A.

We describe the Orthogonal Distance Regression problem (ODR), i.e., the problem of
fitting a function to a given set of data, (x(i), y(i)), i = 1,..., n, where errors are assumed
to exist in both the x-values as well as in the y-values. This is in contrast to ordinary least
squares (OLS) where all of the errors are assumed to exist in the y-values. We first precisely
define the (ODR) problem, and then briefly describe a stable and efficient algorithm for its
solution; the algorithm and its implementation in the software library ODRPACK, as well
as examples that have arisen at NIST, will be discussed in detail by J. Rogers. Here, we
will concentrate on simulation studies that compare ODR to OLS in a controlled setting.
In particular, we compare ODR with OLS under the assumption that the ratio of the errors
in y to the errors in x is known. Several measures of performance are considered. We then
relax this assumption and compare the performance of ODR when the ratio is not known
precisely. Finally, we discuss the computation and use of the asymptotic covariance matrix.
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Collinearity and the One-Dimensional Total
Least Squares Problem.

James R. Bunch and Ricardo D. Fierro

Department of Mathematics,
University of California a-' an Diego,

La Jolla, CA 92093-011z, U.S.A.

The numerical effects of collinearity in the columns of A on the TLS estimator will be
considered. The TLS problem can become ill-conditioned and a regularization technique
is employed to stabilize the solution by increasing the dimension of the solution space. A
condition estimator for the new, but related, problem is proposed; it coincides with the
condition number in the generic case. An approximation theorem will be presented which
more formally specifies the near-intimate relationship between SVD components of A and
[A, b] when v,+ ,j, the last component of the jth right singular vector of [A, b], is "small".
For example, this arises when the jth singular value of [A, b] is nonpredictive.

The smallest singular values of [A, b] inherited from A may identify collinearities that
are all predictive, or all nonpredictive, or a combination of both. We will present a theorem
which implies that one should deduce a minimum norm solution in a space that includes
the singular vectors associated with the collinearities inherited from A, regardless of their
predictive value. Intuitively, when the clustered singular values are included, the solution
space is more "stable".

We will compare the TLS solution to the Truncated LS solution of Bx = b, where B is
the nearest rank r approximation to A. We will discuss how the regularized TLS solution
is also the unique minimum norm solution to a particular LS problem that has a higher
condition number than the Truncated LS problem of the same dimension. Although the
matrix can differ in its singular values and singular vectors from those of B, the singular
triplets associated with the largest singular values are usually close to the corresponding
ones of B.
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Constrained Total Least Squares Problem.

James A. Cadzow

Department of Electrical Engineering,
Vanderbilt University,

P.O.Box 6080, STA. B, Nashville, Tennessee 37235, U.S.A.

In the standard total least squares problem, one is given a system of inconsistent linear
equations

e = Ax - b

in which the matrix A and vector b are subject to error. It is now desired to perturb the
system matrix A to A + E and the vector b to b + r so that

1. [A + E]z = b + r is consistent

2. of all such modifications, the perturbations used have minimum Euclidean norm.

In many applications, the underlying noise free matrix [A; b] will possess theoretical proper-
ties such as having a specific structure (e.g., Toeplitz) and a given rank. In order to retain
these properties, the perturbations E and r need be appropriately constrained. In this
presentation, an algorithm is presented for achieving the minimum Euclidean perturbation
so that the perturbed system of equations possesses the required properties.

17



Total Least Squares and Errors-in-Variables
Regression.

Chi-Lun Cheng

Institute of Statistical Science,
Academia Sinica, Taipei, Taiwan, R.O.C.

This talk surveys the problem of total least squares from a theoretically statistical
viewpoint. It includes the errors-in-variables model and principal component analysis
which are numerically equivalent to total least squares under certain assumptions. We also
discuss the robust version of the statistical models corresponding to total least squares.
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Maximum Likelihood Parameter Estimation
for Array Processing.

Michael P. Clark and Louis L. Scharf

Department of Electrical and Computer Engineering,
University of Colorado,

Campus Box 425, Boulder, CO 80309-0425, U.S.A.

We use the data collected by a multisensor array to identify the Directions Of Arrival
(DOA), frequency and amplitude of individual point sources in the far-field. Many methods
for solving this problem have been developed. However, most of these methods work only
for sources with the same center frequency. Those which do allow arbitrary frequencies
can predict both the frequencies and the DOAs. However, these methods have difficulty
associating (pairing) the frequencies and DOAs. We propose an algorithm, based on the
principle of maximum likelihood, which solves the "pairing" problem for arrays with linear
geometries. The method works by identifying a matrix which characterizes the orthogonal
subspace. This matrix has two parts. The first of these is based on a temporal, whitening
polynomial. The second uses an interpolating polynomial which predicts spatial modes
from temporal modes. The method works by solving for the parameters which chararc-
terize the orthogonal subspace, making it a subspace method. The orthogonal subspace
is identified by any of several methods, including least squares and total least squares.
Once the parameters of the orthogonal subspace have been estimated, the temporal poly-
nomial is rooted to obtain the temporal modes. These modes are then plugged into an
interpolating polynomial to generate the corresponding spatial modes. Simple geometrical
considerations then yield the DOA estimates.
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Total Least Squares with Structured
Perturbations.

James Demmel

University of California at Berkeley,
Computer Science Division,

Evans Hall 513, Berkeley, CA 94720, U.S.A.

The classical TLS solution of AX = B involves using the SVD to find a nearest rank
deficient matrix to [A, B]. This treats errors in all entries of A and B equally. One often
wants to impose more structure on perturbations in A and B. Previous work has imposed
row and column scalings or block structures on the perturbations. We discuss imposing an
independent error scaling on each entry of A and B; i.e. the error norm is not given by a
ball but by an arbitrary rectangular parallelepiped. We discuss recent results of Rohn and
Poljak who give a solution for a certain special case, and show that even in this special case
the problem is NP-complete. Recent work on approximating this NP-complcte solution as
well as open problems are discussed.
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Structured Total Least Squares Problems.

Bart De Moor'

Katholieke Universiteit Leuven,
ESAT Laboratory, Department of Electrical Engineering,

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Given a real matrix A E RP'q with p > q and rank(A) = q. Let A be decomposed as
A = F + M where F contains the elements that cannot be modified and M contains the
elements to be modified. The zero patterns in F and M are complementary: fijmij = 0.
The structured total least squares problem is the problem of finding a rank deficient matrix
B =F N so that JIM - Ni1 is minimized and the zero pattern of N is complementary
to that of F: nijfij = 0.

When F = 0, the problem is known as the total least squares problem [4] and is solved
using the singular value decomposition [3]. Solutions for some specially structured matrices
A have been obtained, such as a matrix A with 'exact' columns (i.e. where F is of the form
F = [ F 0 ]) [5] or when only the lower right hand corner block of a four block partitioned
matrix A can be modified [1] [2]. It remains unsolved however in full generality.
We provide some more insight by showing that the solution is equivalent with solving a
special type of SVD completion problem.

We also derive a remarkable correspondence between the structured TLS problem where

A is four block partitioned and three out of four blocks can be modified, and the solution to
the following total least squares problem with three matrices: Given A E Rk"L, B E 3?×T

and C ?"n. Find X E R' so that the object function JIA-PIIF+JIB-QI1F+HC- RJIF

is minimized subject to PXQ = R. A solution for the scalar case where A is a column
vector and B a row vector has been obtained recently and will probably be generalized by

the time of the workshop.

References

[1] J.W. Demmel, The smalle.s perturbation of a submatriz which lowers the rank and
constrained total least squares problems. SIAM J. Numer. Anal. 24 (1987), pp. 199-

206.

[2] B. De Moor and G.H. Golub, The restricted singular value decomposition: properties
and applications. SIAM J. Matrix Anal. Appl. 12, no.3, July 1991.

'Research Associate of the Belgian N.F.W.O. (National Fund for Scientific Research)
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[4] G.H. Golub and C.F. Van Loan, An analysis of the total least squares problem. SIAM
J. Numer. Anal. 17 (1980), pp. 883-893.

[5] G.H. Golub, A. Hoffman and G.W. Stewart, A generalization of the Eckart-Young-
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Total Least Squares Methods of Analyzing
Mineral Assemblages and Reactions in

Metamorphic Rocks.

George W. Fisher

Department of Earth and Planetary Sciences,
The Johns Hopkins University,

Baltimore, Maryland 21218, U.S.A.

Interpretation of mineral assemblages in metamorphic rocks depends upon determining

1. whether or not individual assemblages could represent equilibrium states;

2. whether or not pairs of assemblages could have equilibrated under the same pressure,

temperature conditions; and

3. the nature of the reactions relating assemblages equilibrated under different condi-

tions.

Traditional methods of analysis rely on graphical projection methods which are simple to
use, but can not deal effectively with assemblages involving variation in more than three
components. In multicomponent assemblages, these questions are best approached by in-
vestigating th~e rank, composition space (range) and reaction space (null space) of matrices

in which the phases of an assemblage are represented by columns and the components by
rows.

Total Least Squares (TLS) methods based on the singular value decomposition provide
a simple and elegant way of finding a model matrix of specified rank which approximates
the observed matrix within analytical uncertainty. Examination of the elements of the

null space (or reaction space) associated with that matrix provide unambiguous criteria
for identifying possible equilibrium assemblages and for determining whether or not two
assemblages can have equilibrated under the same external conditions: an empty null
space reflects a possible equilibrium assemblage; a null space containing reactions in which
the minerals of two assemblages have opposite signs indicates that the two assemblages
intersect in composition space and therefore can not have equilibrated under the same
conditions; a null space lacking any such reactions indicates that the two assemblages do

not intersect, and so may have equilibrated under the same conditions.

I have developed a set of easy-to-use computer programs which perform these opera-
tions. Trial runs using analyzed mineral compositions from three outcrops spanning the
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lower sillimanite zone of northwestern Maine, described by C.T. Foster (1977, Am. Min-
eralogist) illustrate the power of the method. All assemblages contain the seven phases
sillimanite, staurolite, biotite, garnet, muscovite, quartz, plagioclase and ilmenite. All
assemblages examined have a rank of seven, requiring seven components, and probably
represent divariant equilibrium. Assemblages from individual outcrops show no significant
intersections, while those from outcrops differing in temperature by as 'ittle as 6" C show
systematic intersections reflecting divariant reactions.
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Properties of Estimators for the
Errors-in-variables Model.

IWayne '. Fuller

Department of Statistics, Iowa State University,
Snedecor Hall, Ames, Iowa 50010, U.S.A.

The method of total least squares can b, used to produce estimates of the oarameters
of a statistical model. For the linear model, the properties of the estimators can be derived
under relatively weak assumptions. We give conditions sufficient for the estimators to
be statistically consistent. Also, an estimator of the covariance matrix of the limiting
distribution of the estimated parameter vector is presented. The estimation procedures

have been implemented in a personal computer program.
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Basic Principles of the Total Least Squares
Problem.

Gene H. Golub

Department of Computer Sciences,

Stanford University,
Stanford, CA 94305, U.S.A.

We review some of the basic ideas and principles involved in the development of Total

Least Squares.
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Errors-in-variables Identification and Model
Uniqueness.

Roberto P. Guidorzi
Diparttimento di Elettronica, Informatica e Sistemistica,

Universitd di Bologna,
Viale del Risorgimento 2, 40136 Bologna, Italy

The problem of deriving possible linear relations from data affected by additive noise
has received remarkable attention in recent years particularly regarding the assumptions
("prejudices") behind the procedures leading to unique models. Unlike the many ap-
proaches leading to unique solutions (Least Squares, Maximum Likelihood, etc.) the Frisch
scheme, belonging to the family of Errors-in-Variables (EV) schemes, leads to a whole fam-
ily of models compatible with a set of noisy data and is considered as only mildly affected
by prejudices.

This talk discusses the loci of all possible solutions, in the noise space, under the as-
sumptions of the Frisch scheme and shows how it can be possible, when different sets of
noisy data are available, to obtain the unique model behind the data and also to derive the
actual amount of noise on the data when the noiseless data are linked by a single linear
relation. The more general EV case of non-independent additive noises is then consid-
ered and it is shown how, under the same assumptions, it is still possible to obtain the
unique set of parameters linking the noiseless data and the whole family of compatible noise
covariance matrices which is defined, in this case, by the infinite elements of a linear variety.

Finally, the previous considerations, which regard algebraic systems, are extended to
dynamic systems; in this case, the dimensions of the noise and parameter spaces are no
longer equal and also the order of the model must be estimated. Also in this case, proce-
dures can be developed for a consistent estimation of the model order and the parameters
and for the estimation of the noise covariance matrix.
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A Model for Signature Verification.

Trevor Hastie, Eyal Kishon, Malcolm Clark and Jason Fan

AT&T Bell Laboratories,
600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

We propose a statistical model for dynamic signature verification by computer. Our
model recognizes that repeated signatures by the "owner" are similar but not identical.

Our model consists of a template signature for each individual, and several factors which
allow for variations in each rendition of this template. These variations include the speed

of writing, as well as slowly varying affine transformations such as size, rotation and shear.
The estimated template represents the "mean" of a sample of signatures from an individual,

and the variations in the factors can be used to establish several measures of "variance".
These quantitative measures are essential for reliable signature verification.

Estimating the template consists of two essential steps:

" Aligning or "time-warping" the set of realized signatures for an individual, and seg-
menting all the signatures into "letters",

" given the alignment and segmentation, estimating the average shape of the signatures

using piece-wise affine-invariant TLS.

A new signature is verified by comparing it with the template signature. It will be judged

fraudulant if its shape is wrong, or if the speed signal with which it was rendered does
not match the model. In this talk I describe the model and its estimation, illustrating the
procedures with several examples.
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Principal Curves.

Trevor Hastie

AT&T Bell Laboratories,
600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

Tom Duchamp

Department of Mathematics,
University of Washington,
Seattle, WA 98195, U.S.A.

Werner St aetzle

Department of Statistics,
University of Washington,

Seattle, WA 98195, U.S.A.

Principal curves are smooth one-dimensional curves that pass through the middle of a
p-dimensional dataset, providing a nonlinear summary of the data. They are nonparamet-
tic, and thcir shape is suggested by the data. In this talk I will define principal curves,
discuss algorithms for their construction, present theoretical results, and illustrate their
application.
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The Use of Total Least Squares in an
Oceanographic Problem.

Jae Hak Lee

Department of geology and geophysics,
Yale University,

P.O.Box 6666, New Haven, Connecticut 06511, U.S.A.

An appealing property of the total least squares (TLS) solution is its invariance to
some cases of transformations of unknowns. That is, for an overdetermined set of linear
equations Ax=b where A is the coefficient matrix, b is the data vector and x is the vec-
tor of unknowns, the TLS solution is not affected by the rotation of the space of A and
b or a reciprocal transformation of unknowns. The latter case is used to treat a special
problem which has no inhomogeneous term (i.e., b=O) but with a priori information. It
is shown that, unlike the ordinary least squares method, the TLS method yields a unique
set of solutions. As an application of this property to real situations, the TLS method is
applied to an oceanographic inverse problem which is to determine velocities and diffusion
coefficients from known tracer (temperature and salinity here) distributions based on the
steady-state advective-diffusive equation and mass continuity. The derived diffusivities
lead to conclusions that are consistent with the known physics. This indicates that the
application of TLS is quite successful.

We review the invariance of the TLS solution by using a geometric interpretation of
the line fitting problem and report the results of this successful application of the TLS
method.
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Total Least Squares and Acceptable/
Generalized Solution to a Problem.

Theoretical Results for General Norms.

Jean-Franqois Maitre

Ecole centrale de Lyon,
Departement de Math~matiques,

B.P. 163, 69131 Ecully cedex, France

We consider a problem in the form

x E E, P(x) = 0, (1)

where P is a mapping from a set E to a linear space F and a normed linear subspace A
of FE. For each x E E, we define

e(x) = inf{jI[Pj; 6P E A, (P + ,P)(z) = 0}. (2)

We say that x is an E-solution to (1) if 6P E A exists with

(P+P)()=0, bP< , (3)

which is equivalent to e(x) < 6.

We say that xo is a generalized solution to (1) if

e(xo) = min{e(x); x E E}. (4)

The quantity e(x), given by(2), is equal to IiP(x)II=, where the semi-norm I.ll is defined
by:

IlyII = inf{IIMi;M E A,M(x) = y}. (5)

We give conditions of existence and properties of Il.]t* When E and F are normed
linear spaces, A consists of linear mappings and l.l= is a norm for x # 0, we have the
equivalence :

,lllE E \ {0},y E F, IiyII2 = j H 4- Vz E E,f E F',llfl =; lzIHllfl (6)

and £(E, F) is the greatest A for which the relations in (6) are right.

In the case of a linear problem
Ax - b = 0, (7)
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that is P(x) = Ax - b, and special choices of the norm of A satisfying (6), we have

e(x) = 1b - Axll/ll(x, 1)11 (8)

which corresponds for the euclidean norm to the Total least Squares problem. When A is
limited to perturbations (0,6b) we have e(z) 1lb - Axil (Least Squares), and when A is
limited to perturbations (6A, O) we have e(x) 1ib- Axill II.
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Algorithms and Architectures for Recursive
Total Least Squares Estimation.

Marc Moonen 2

Katholieke Universiteit Leuven,
ESAT Laboratory, Department of Electrical Engineering,

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Total least squares parameter estimation is an alternative to least squares estimation,
although much less used for instance in adaptive filtering. The absence of efficient recursive
algorithms here has apparently been a motive for using Recursive Least Squares (RLS)
even in those applications where typically. one would better use the TLS technique. Our
aim is therefore to derive a similar recursive total least squares (RTLS) algorithm, which
is also amenable to parallel implementation. It turns out that a RTLS algorithm can
be constructed, based on inverse iteration, which very much resembles the original RLS
algorithm. Algorithmic and architectural considerations for RLS then straightforwardly
carry over to the RTLS case.

2Senior Research Assistant of the Belgian N.F.W.O. (National Fund for Scientific Research)
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ODRPACK: Software for Orthogonal
Distance Regression.

Janet E. Rogers

Vational Institute of Standards and Technology (NIST),
Applied and Coml utational Mathematics Division,

325 Broadway, Boulder, Colorado 80303-3328, U.S.A.

We will examine the Orthogonal Distance Regression (ODR) technique for fitting data
to a general nonlinear model when there are errors in all of the variables (x(i),y(i)), i =
1,... ,n. ODR solves this extended least squares problem by minimizing the sum of the
squared orthogonal distances between each data point and the curve described by the
model equation. The number of unknowns involved in the ODR problem is the number of
model parameters plus the number of variables observed with measurement error, often a
very large number. By exploiting the structure of the problem, however, we have devel-
oped a stable and efficient trust region Levenberg-Marquardt algorithm with a work per
step bound equal to that required for the Levenberg-Marquardt method for ordinary least
squares (OLS), where the number of unknowns is simply the number of model parameters.

We will describe our ODR algorithm, and also the use and features of the software Ii-
brary ODRPACK that is an implementation of it. ODRPACK can be used to solve explicit,
implicit and multiresponse ODR problems. Our discussion will include several examples
of such ODR problems that have arisen at NIST and that exemplify the performance of
ODRPACK. P. Boggs will also provide examples of ODRPACK's use, showing the results
of simulation studies that compare ODR to OLS in a controlled setting. The ODRPACK
software will be available for demonstration and distribution.
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Real World Applications of Total Least
Squares: Direction-finding and System

Identification.

Richard Roy

Systems Research Associates, Inc.,
10030 Phar Lap Drive, Cupertino, CA 95014, U.S.A.

Various aspects and experiences in the application of TLS concepts to the problems
of direction-of-arrival (DOA) estimation and multivariable linear system identification will
be discussed. A demonstration of several such applications to real data will be presented.
These will include DOA estimation in a coherent source environment, and system identi-
fication of a large flexible space structure. A MATLAB Toolbox for sensor array signal
processing (AP Toolbox) will be presented along with a similar set of routines for system
identification. Some open/difficult problems remaining to be solved will be described and
recent attempts at their solution outlined. These include exploitation of problem structure
to reduce computational complexity, and the problem of detecting dimensionality of the
appropriate subspaces in these problems.
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Tensorial Calibration in Chemistry.

Mary B. Seasholtz and Bruce R. Kowalski

Center for Process Analytical Chemistry,
University of Washington,

BG-1O, UW, Seattle, WA 98195, U.S.A.

One goal in analytical chemistry is to relate a series of readily acquired measurements
to a physical or chemical property of a sample. Tensorial calibration is a context for char-
acterizing the types of data produced by analytical instrumentation. Instruments measure
(per sample) a response that is either a zeroth, first, second or third order tensor (scalar,
vector, matrix or cube, respectively). The Total Least Squares (TLS) problem arises in
first order calibration, when a vector of data is collected per sample, giving the model
c = Rb + c, where c is a vector containing the concentrations for all the samples, R is a
matrix with the response for each sample in a row, and b is the regression vector.

A method called Parsimonious Regression (PR) will be presented that reduces the
amount of measurement error in R incorporated into the model. This method starts with
a principal component decomposition of R. Even the largest principal component factors
(eigenvectors of RR T and R TR with large eigenvalues) will contain some measurement
noise. This method eliminates one dimension (rank) at a time according to a cross val-
idation criterion, which forces the parts of the eigenvectors corresponding to nonrelevant
variance (measurement error) to be removed. Cross validation more closely models the
predictive capability of a model than does the fit of the data used to make the model, and
will not allow correlations of noise in R to c to be incorparated into the model. The one
remaining dimension after the decomposition has been reduced to rank one and will point
in the direction of the regression vector b. This method will be compared to principal
component regression (PCR) and partial least squares (PLS). PCR and PLS minimize a
least squares fit criterion with a single step projection, while in PR any criterion can be
minimized.
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Some Aspects on Treating Measurement
Errors in System Identification.

Torsten Sdderstr6m

Automatic Control & Systems Analysis Group,
Department of Technology, Uppsala university,

P.O.Box 27, 75103 Uppsala, Sweden

When applying system identification (modelling of dynamic systems) it is necessary to
account for disturbances and measurement errors. Some different cases, like presence of
input and output errors, are discussed, as well as their consequences for parameter fitting.
It is demonstrated how a standard least squares fit does not give a consistent model when
the output measurement noise is uncorrelated (white noise). A bias compens&' 'i can be
used at a modest cost to give a consistent model. The method so construc an also
be interpreted as a classical eigenvector method or a total least squares fit. Its statistical
properties are reviewed. The parameter estimates are consistent and asymptotically Gaus-
sian distributed. Alternative identification methods, like instrumental variables and output
error methods, are briefly discussed, and compared to the total least squares approach.
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Updating Rank Revealing
URV Decompositions.

Gilbert W. Stewart
Department of Computer Science.

Institute for Advanced Computer Studies,
University of Maryland. College Park, MD 20742, U.S.A.

Let X be an n . p matrix and let x be a p-vector. In many applications it is required
to determine the effective rank of

and compute an approximate null space for X. In general, the problem will have already
been solved for X by means of a suitable decomposition. The problem is then to update
this decomposition to obtain the corresponding decomposition of X .

In many ways the decompositions of choice are the singular value decomposition of
X or the spectral decomposition of C = XTX. However, bth these decompositions are
difficult to update. An alternative is the (pivoted) QR decomposition of X or the Cholesky
decomposition of C, both of which can be updated. However, these decomposition do not
provide an explicit basis for the approximate null space.

In this talk we describe a class of orthogonal decompositions, called URV decomposi-
tions, which in some sense lie between the singular value decomposition and the QR de-
composition and share the advantages of both. They can be made rank revealing and they
furnish an explicit basis for the approximate null space. Moreover, they can be updated
sequentially in 0(p2 ) time. On a linear array of p processors, they can be updated in 0(p)
time.
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Comparative Performance Study of Least
Squares and Total Least Squares

Yule-Walker Estimates of Autoregressive
Parameters.

Adina Stoian

General Direction for Telecomuunications,
SOS. Colentina nr. 22, BL. C SC.C ET.3,

AP.104, Sector 2, Bucharest-72 64, R , mania

This talk considers the estimation of the parameters of autoregressions from noisy mea-
surements. A new method for solving this problem is presented, which uses a combination
of two recent algorithms: a High-Order Yule-Walker (H"'YW) algorithm for estimation of
the autoregressive (AR) parameters of an autoregressive moving average (ARMA) model,
introduced by P. Stoica, B. Friedlander and T. S6derstr6m, and the Total Least Squares
(TLS) algorithm studied by S. Van Huffel. Simulation results are presented in order to
evaluate the proposed HOYW-TLS technique and the HOYW-LS technique with respect
to their accuracy in parameter estimation of autoregressions. The performances of these
two techniques are mainly influenced by the following factors: the pole-zero configusation
of the ARMA processes, the sample length and the diension of the HOYW system. It is
conc!uded that the HOYW-TLS technique is especially useful for any sample length and
any dimension of the HOYW systen., when the zeros of the ARMA model are close to the

unit circle. However, even if no information about the singularities of the ARMA process
is available, the use of the TLS method is proved to be strongly recommended. for it is in
practice never less accurate than the classical LS technique.
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Signal Enhancement Motivated by Total
Least Squares and Linear Prediction.

Donald W. Tufts and Abhijit A. Shah

Department of Electrical Engineering,
University of Rhode Island,

Kingston, RI-02881, U.S.A.

Evaluation and improvement of a SVD-based data-adaptive signal estimation agorithml]
are presented. In the first step of this algorithm a matrix with a Hankel-like structure is
formed from the noise corrupted time-series data. It is assumed that the rank of the signal
only data matrix is known or is obtainable from the Singular Value Decomposition (SVD)
of the noise corrupted data matrix. What is important is that the signal only matrix can be
well approximated by a matrix of lower rank. Using SVD such a low rank approximation
of the signal only matrix is made. By summing across the diagonals of this "cleaned up"
post-SVD low rank matrix, time series data with enhanced signal component is extracted.

The highly nonlinear nature of SVD makes performance evaluation of such SVD-based
applications a difficult task, but methods of backward error analysis make the task easier.
The best low rank approximation of a perturbed matrix is approximated by a first order
perturbation expansion of the orthogonal subspace. This makes computation of statistical
properties of the post-SVD data a tractable problem. Using the obtained statistical infor-
mation, performance of the signal! enhancement algorithm is evaluated.

It is also shown that this statistical information can be utilized to extract the en-
hanced signal from the post-SVD low rank matrix by an optimal linear combination of its
elements. Computer simulation results for verifying theoretical predictions and for com-
paring the performance of the original and modified algorithms to the Cramr-Rao bound
are presented.
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Asymptotic Properties of a Class of
Regression-type Estimators.

Hugo Van hamme and Rik Fintelon

division ELEC, Department of Electrical Engineering,
Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussel, Belgium

An asymptotic analysis of the regression problem Hp = 0 where only a noisy observa-
tion G of H is available is presented. A class of estimators for p is given by the minimizer

of ptGtD;iGp over p, where D. is a positive semi-definite Toeplitz weighting matrix with
entries that are quadratic in p. Particular choices of D, result in the maximum likeli-
hood estimator (MLE) if the noise G - H is zero-mean Gaussian with (partially) known
covariance, an approximate MLE (AMLE) or the generalized total least squares (GTLS)
estimator.

Sufficient conditions for consistency and asymptotic normality for non-Gaussian noise
are given in terms of absolute summability of joint cumulants and constraints on the
weighting matrix D. Expressions for the asymptotic parameter covariance are given and

show that the MLE doesn't reach the Cram~r-Rao bound.
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The Total Least Squares Problem : current
state of research and applications.

S-bine Van Huff

Katholieke Universiteit Leuven,
ESAT Laboratory, Department of Electrical Engineering,

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

The aim of this lecture is to present an overview of the current state of research of
a modeling technique which is known as total least squares in numerical linear algebra
and signal processing, errors-in-variables and orthogonal regression in the statistical com-
munity, eigenvector or Koopmans-Levin method and compensated least squares in system
identification.

The basic motivation for Total Least Squares (TLS) is the following: Let a set of
multidimensional data points (vectors) be given. How can one obtain a linear model that
explains these data? The idea is to modify all data points in such a way that some norm
of the modification is minimized subject to the constraint that the modified vectors satisfy
a linear relation.

The origin of this basic insight can be traced back to the beginning of this century. It
was rediscovered many times, often independently, mainly in the statistical and psychome-
tric literature. However, it is only in the last decade that the technique also penetrated in
scientific and engineering applications. One of the main reasons for its sudden popularity
is the availability of efficient and numerical robust algorithms, in which the singular value
decomposition plays a prominent role. Another reason is the fact that TLS is really an
applications oriented procedure: It is ideally suited for situations in which all data are
corrupted by noise, which is almost always the case in engineering applications. In this
sense it is a powerful extension of the classical least squares idea, which corresponds only
to a partial modification of the data.

This lecture surveys the TLS problem and enlightens the main results. In particular,
the computational, as well as the numerical and statistical aspects of the TLS problem are
discussed and compared with those of other related problems, e.g. LS and multivariate
regression techniques. Different TLS algorithms are presented and evaluated and practi-
cal guidelines are given which delineate the domain of applicability of the TLS method.
Furthermore, some recent generalizations of the TLS problem are presented, as well as an
overview of its applications.

3Senior Research Assistant of the Belgian N.F.W.O. (National Fund for Scientific Research)
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An Efficient Total Least Squares Algorithm
Based on a Rank-Revealing Two-sided

Orthogonal Decomposition.

Sabine Van Huffel4

Katholieke Universiteit Leuven,
ESAT Laboratory, Department of Electrical Engineering,

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Hongyuan Zha
Scientific Computing and Computational Mathematics,

Stanford Universit,,
Stanford, CA 94305, U.S.A.

Solving Total Least Squares (TLS) problems AX ; B requires the computation of
the noise subspace of the data matrix [A; B]. The widely used tool for doing this is
the Singular Value Decomposition (SVD). However, the SVD has the drawback that it is
computationally expensive. Therefore, we consider here a different so-called rank-revealing
two-sided orthogonal decomposition which decomposes the matrix into a product of a
unitary matrix, a triangular matrix and another unitary matrix in such a way that the
effective rank of the matrix is obvious and at the same time the noise subspace is exhibited
explicitly. We show how this decomposition leads to an efficient and reliable TLS algorithm
that can be parallelized in an efficient way.

4 Senior Research Assistant of the Belgian N.F.W.O. (National Fund for Scientific Research)
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Robust Estimation in Measurement Error
Models.

John Van Ness

Programs in Mathematical Sciences,
University of Texas at Dallas,

Richardson, TX 75080, U.S.A.

This talk will discuss the properties of robust estimation for measurement error mod-

els. A method for converting ordinary regression algorithms to orthogonal regression algo-
rithms will be described. The main discussion will primarily consider bounded influence

estimation using generalized M-estimators. Topics will include sharp lower bounds on the
sensitivities, most bounded robust estimators and Hampel's optimality problem. The lat-
ter finds estimators which minimize the asymptotic variance subject to an upper bound

on the influence function.
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Total Chebyshev Approximation.

G. Alistair Watson

Department of Mathematics and Computer Sciences,
University of Dundee, Dundee, DD14HN, Scotland, U.K.

A generalization of the total least squares problem to infinite dimensional spaces is
considered, which leads naturally to the total Chebyshev approximation problem:

n

minimize 1Z ai~i(x)JJ subject to il 2 = 1,
i=1

where the functions Oi(x) are given real functions. Various aspects of this problem are
considered.
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The Total Least Squares Problem with
More than One Solution: Solutions,

Perturbation Theory and Relations with
the Least Squares Problem.

Musheng Wei

Department of Mathematics,
East China Normal University,

Shanghai 200062, China

This talk presents an analysis of the solutions of the Total Least Squares (TLS) problem
AX . B in cases where the matrix [A; B] may have multiple smallest singular values.
General formulas for the minimum norm TLS solutions are given; the difference between
the TLS and the LS solutions is obtained; the error bounds for the perturbed TLS solutions
with or without minimal length are deduced. The analysis is useful especially for rank-
deficient problems and generalizes the results of Golub and Van Loan, Van Huffel and
Vandewalle and Zoltowski. Numerical results for a practical application are also given to
verify the error bounds.
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